MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
| Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
|---|---|---|---|---|---|
| Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
| Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
| Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
| Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
G* = = [ ] ω , , .=
Em física quântica, a Teoria de Regge é o estudo das propriedades analíticas de dispersão como função de momento angular. Por exemplo spin electrónico (elétrons) podem apresentar movimento de rotação em dois sentidos diferentes, por isso é que dois elétrons podem ocupar o mesmo nível ao mesmo tempo, ou 4 ou 8… . Elétrons e Quarks todos possuem Spin de 1/2 e Grávitons Spin 2[1]. Aplicando a matemática Função Beta foi possível explicar a presença dessas linhas retas, como sendo filamentos[2]. Assim nasceu a primeira teoria da corda chamada Primeira-quantificação da corda que se dividiram em cordas abertas e cordas fechadas. Cordas abertas têm menos modos de vibração que cordas fechadas, pois possuem as pontas livres, na corda fechada para manter as pontas fixas é necessário mais modos de vibração[3]. Esta teoria não-relativística foi desenvolvido por Tullio Regge, em 1957.
Pólos de Regge[editar | editar código-fonte]
O exemplo mais simples dos pólos de Regge é fornecido pela abordagem mecânica quântica do potencial de Coulomb ou, diferentemente, pelo tratamento mecânico quântico da ligação ou dispersão de um elétron de massa e carga elétrica de um próton de massa e carga . A energia da ligação do elétron ao próton é negativa, enquanto que, para a dispersão, a energia é positiva. A fórmula para a energia de ligação é a expressão:
- /
Considerada como uma função complexa de , essa expressão descreve no plano- complexo um caminho que é chamado de "trajetória de Regge". Assim, nesta consideração, o momento orbital pode assumir valores complexos.
As trajetórias de Regge podem ser obtidas para muitos outros potenciais, em particular também para o potencial de Yukawa[4].
As trajetórias de Regge aparecem como pólos da amplitude de dispersão[5] ou na matriz-S relacionada. No caso do potencial de Coulomb considerado acima, esta matriz-S é dada pela seguinte expressão:
- /
onde é a função gama, uma generalização de fatorial .
Esta função gama é uma função meromorfa do seu argumento com pólos simples em . Assim, a expressão para (a função gama no numerador) possui pólos precisamente nesses pontos, que são dadas pela expressão acima para as trajetórias de Regge; por isso o nome pólos de Regge.
Comentários
Postar um comentário